试题
题目:
如图,已知∠C=∠D=90°,有四个可添加的条件:①AC=BD;②BC=AD;③∠CAB=∠DBA;④∠CBA=∠DAB.能使△ABC≌△BAD的条件有( )
A.1个
B.2个
C.3个
D.4个
答案
D
解:添加①AC=BD,可根据HL判定△ABC≌△BAD;
添加②BC=AD,可根据HL判定△ABC≌△BAD
添加③∠CAB=∠DBA,可根据AAS判定△ABC≌△BAD;
添加④∠CBA=∠DAB,可根据AAS判定△ABC≌△BAD.
故选D.
考点梳理
考点
分析
点评
全等三角形的判定.
要确定添加的条件,首先要看现有的已知条件,∠C=∠D=90°,还有一条公共边AB=AB,具备一角,一边分别对应相等,只要再添加任意一边或任意一角都能使得三角形全等,于是答案可得.
本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.做题时要根据已知条件结合判定方法逐个验证.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )