答案
4
明:∵四边形ABCD是平行四边形(已知),
∴AD∥BC,AB=CD(平行四边形的对边平行,对边相等)
∴∠GBC=∠BGA,∠BCE=∠CED(两直线平行,内错角相等)
又∵BG平分∠ABC,CE平分∠BCD(已知),
∴∠ABG=∠GBC,∠BCE=∠ECD(角平分线定义)

∴∠ABG=∠AGB,∠ECD=∠CED.
∴AB=AG,CD=DE(在同一个三角形中,等角对等边)
∴AG=DE,
∴AG-EG=DE-EG,
即AE=DG,
∵AB=6,AD=8,
∴AG=6,DG=AE=2,
∴EG=4,
故答案为4.