试题
题目:
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
A.1:2
B.1:3
C.1:4
D.1:5
答案
A
解:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴△EDF∽△BCF,
∴△EDF与△BCF的周长之比为
DE
BC
,
∵E是AD边上的中点,
∴AD=2DE,
∵AD=BC,
∴BC=2DE,
∴△EDF与△BCF的周长之比1:2,
故选A.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
根据平行四边形性质得出AD=BC,AD∥BC,推出△EDF∽△BCF,得出△EDF与△BCF的周长之比为
DE
BC
,根据BC=AD=2DE代入求出即可.
本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:平行四边形的对边平行且相等,相似三角形的周长之比等于相似比.
压轴题.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )