试题
题目:
·ABCD中,M、N分别在AC、AD上,AM=2CM,DN=2AN,若△DMN面积为4cm
2
,则·ABCD的面积为
18cm
2
18cm
2
.
答案
18cm
2
解:设平行四边形ABCD的面积为S,
则S
△ACD
=
1
2
S,
∵AM=2CM,
∴S
△AMD
=
1
3
S
△ACD
=
1
3
S,
∵DN=2AN,
∴S
△DMN
=
2
3
S
△AMD
=
4
9
S,
∵△DMN的面积为4,
∴
4
9
S=4,
解得S=18,
故答案为18cm
2
.
考点梳理
考点
分析
点评
平行四边形的性质.
设平行四边形ABCD的面积为S,根据的高的三角形的面积的比等于底边的比表示出△AMD的面积,再表示出△DMN的面积,计算即可得解.
本题考查了平行四边形的性质,主要利用了等高的三角形的面积的比等于底边的比,一定要熟练掌握并灵活运用.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )