试题
题目:
如图,在△ABC中,AB=AC=5,D是BC边上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是
10
10
.
答案
10
解:∵AB=AC=5,∴∠B=∠C,
由DF∥AC,得∠FDB=∠C=∠B,
∴FD=FB,
同理,得DE=EC.
∴四边形AFDE的周长=AF+AE+FD+DE
=AF+FB+AE+EC
=AB+AC
=5+5=10.
故答案为10.
考点梳理
考点
分析
点评
平行四边形的性质.
因为AB=AC,所以△ABC为等腰三角形,由DE∥AB,可证△CDE为等腰三角形,同理△BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长.
本题利用了两直线平行,同位角相等和等边对等角及等角对等边来把四边形的周长转移到AB和ACH上求解的.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )