试题

题目:
青果学院(2013·长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.
答案
证明:∵四边形ADEF为平行四边形,
∴AD=EF,AD∥EF,
∴∠ACB=∠FEB,
∵AB=AC,
∴∠ACB=∠B,
∴∠FEB=∠B,
∴EF=BF,
∴AD=BF.
证明:∵四边形ADEF为平行四边形,
∴AD=EF,AD∥EF,
∴∠ACB=∠FEB,
∵AB=AC,
∴∠ACB=∠B,
∴∠FEB=∠B,
∴EF=BF,
∴AD=BF.
考点梳理
平行四边形的性质.
根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.
本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.
证明题.
找相似题