试题
题目:
如图所示,△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,且BE=AC.求证:DE=CD.
答案
证明:∵AD⊥BC,
∴∠EDB=∠CDA=90°,
∵∠ABC=45°,
∴∠BAD=∠ABD=45°,
∴BD=AD,
在Rt△BDE和Rt△ADC中
BE=AC
BD=AD
∴Rt△BDE≌Rt△ADC(HL),
∴DE=CD.
证明:∵AD⊥BC,
∴∠EDB=∠CDA=90°,
∵∠ABC=45°,
∴∠BAD=∠ABD=45°,
∴BD=AD,
在Rt△BDE和Rt△ADC中
BE=AC
BD=AD
∴Rt△BDE≌Rt△ADC(HL),
∴DE=CD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
求出∠EDB=∠CDA=90°,求出∠BAD=∠ABD=45°,推出BD=AD,根据HL证出Rt△BDE≌Rt△ADC即可.
本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )