试题
题目:
如图,AB=AC,BE和CD相交于P,PB=PC,求证:PD=PE.
答案
证明:连接BC,
∵PB=PC,
∴∠PBC=∠PCB,
又AB=AC,
∴∠ABC=∠ACB,
∴∠ABC-∠PBC=∠ACB-∠PCB,即∠DBP=∠ECP,
在△DPB和△EPC中,
∠ABP=∠ACP
∠DBP=∠ECP
PB=PC
,
∴△DPB≌△EPC,
∴PD=PE.
证明:连接BC,
∵PB=PC,
∴∠PBC=∠PCB,
又AB=AC,
∴∠ABC=∠ACB,
∴∠ABC-∠PBC=∠ACB-∠PCB,即∠DBP=∠ECP,
在△DPB和△EPC中,
∠ABP=∠ACP
∠DBP=∠ECP
PB=PC
,
∴△DPB≌△EPC,
∴PD=PE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
首先连接BC,然后利用等腰三角形的性质可以证明∠PBD=∠PCE,最后证明△PBD≌△PCE,利用全等三角形的性质即可求解.
此题主要考查了全等三角形的性质与判定,同时也利用了等腰三角形的性质,题目有一定的综合性,难度不大.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )