试题
题目:
已知,如图,△ABC中,∠BAC=90°,AB=AC,D为AC上一点,且∠BDC=124°,延长BA到点E,使AE=AD,BD的延长线交CE于点F,求∠E的度数.
答案
解:在△ABD和△ACE中,
∵AB=AC,∠DAB=∠CAE=90°AD=AE,
∴△ABD≌△ACE(SAS),
∴∠E=∠ADB.
∵∠ADB=180°-∠BDC=180°-124°=56°,
∴∠E=56°.
解:在△ABD和△ACE中,
∵AB=AC,∠DAB=∠CAE=90°AD=AE,
∴△ABD≌△ACE(SAS),
∴∠E=∠ADB.
∵∠ADB=180°-∠BDC=180°-124°=56°,
∴∠E=56°.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
有条件可证△ABD≌△ACE,所以可得∠E=∠ADB,又因为∠BDC=124°,所以可求出∠ADB=56°所以∠E=56°.
本题考查了全等三角形的判断和性质,常用的判断方法为:SAS,SSS,AAS,ASA.常用到的性质是:对应角相等,对应边相等.
计算题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )