试题
题目:
(2013·攀枝花)如图所示,已知在平行四边形ABCD中,BE=DF
求证:AE=CF.
答案
证明:∵BE=DF,
∴BE-EF=DF-EF,
∴DE=BF,
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADE=∠CBF,
在△ADE和△CBF中
DE=BF
∠ADE=∠CBF
AD=BC
∴△ADE≌△CBF(SAS),
∴AE=CF.
证明:∵BE=DF,
∴BE-EF=DF-EF,
∴DE=BF,
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADE=∠CBF,
在△ADE和△CBF中
DE=BF
∠ADE=∠CBF
AD=BC
∴△ADE≌△CBF(SAS),
∴AE=CF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
求出DE=BF,根据平行四边形性质求出AD=BC,AD∥BC,推出∠ADE=∠CBF,证出△ADE≌△CBF即可.
本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,主要考查了学生运用定理进行推理的能力.
证明题.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )