试题
题目:
如图,已知OA=OB,OC=OD,下列结论中:①∠A=∠B;②DE=CE;③连OE,则OE平分∠O,正确的是( )
A.①②
B.②③
C.①③
D.①②③
答案
D
解:∵OA=OB,OC=OD,∠O为公共角,
∴△OAD≌△OBC,
∴∠A=∠B①;
∵OA-OC=OB-OD,即AC=BD,且∠A=∠B,∠AEC=∠BED(对顶角相等),
∴△AEC≌△BED,
∴DE=CE②,AE=BE;
连接OE,∵OA=OB,AE=BE,OA为公共边,
∴△OAE≌△OBE,
∴∠AOE=∠BOE,即OE平分∠O③.
综上得①②③均正确.
故选D.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
由已知据SAS易证得△OAD≌△OBC,可得∠A=∠B;再根据AAS可证△AEC≌△BED,可得DE=CE,AE=BE;
连接OE由以上条件易证得△OAE≌△OBE,即可得∠AOE=∠BOE,即OE平分∠O.此题即可得解.
本题考查了全等三角形的性质及判定,熟练掌握全等三角形的判定方法是解题的关键.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )