试题
题目:
(2013·日照)如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.
(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
答案
(1)证明:∵AB=AC,
∴∠B=∠ACB.
又∵四边形ABDE是平行四边形
∴AE∥BD,AE=BD,
∴∠ACB=∠CAE=∠B,
在△DBA和△AEC中
AB=AC
∠B=∠EAC
BD=AE
,
∴△DBA≌△AEC(SAS);
(2)解:过A作AG⊥BC,垂足为G.设AG=x,
在Rt△AGD中,∵∠ADC=45°,
∴AG=DG=x,
在Rt△AGB中,∵∠B=30°,
∴BG=
3
x
,
又∵BD=10.
∴BG-DG=BD,即
3
x-x=10
,
解得AG=x=
10
3
-1
=5
3
+5
,
∴S
平行四边形ABDE
=BD·AG=10×(
5
3
+5
)=
50
3
+50
.
(1)证明:∵AB=AC,
∴∠B=∠ACB.
又∵四边形ABDE是平行四边形
∴AE∥BD,AE=BD,
∴∠ACB=∠CAE=∠B,
在△DBA和△AEC中
AB=AC
∠B=∠EAC
BD=AE
,
∴△DBA≌△AEC(SAS);
(2)解:过A作AG⊥BC,垂足为G.设AG=x,
在Rt△AGD中,∵∠ADC=45°,
∴AG=DG=x,
在Rt△AGB中,∵∠B=30°,
∴BG=
3
x
,
又∵BD=10.
∴BG-DG=BD,即
3
x-x=10
,
解得AG=x=
10
3
-1
=5
3
+5
,
∴S
平行四边形ABDE
=BD·AG=10×(
5
3
+5
)=
50
3
+50
.
考点梳理
考点
分析
点评
平行四边形的性质;全等三角形的判定与性质.
(1)根据平行四边形的性质得出,再利用等三角形的判定方法得出即可;
(2)首先根据锐角三角函数关系得出BG=
3
x,进而利用BG-DG=BD求出AG的长,进而得出平行四边形ABDE的面积.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,根据BG-DG=BD得出AG的长是解题关键.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )