试题
题目:
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①△BDF≌△CDE;②CE=BF;③BF∥CE;④△ABD和△ACD面积相等.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
答案
D
解:①∵AD是△ABC的中线,
∴BD=CD,
在△BDF和△CDE中,
BD=CD
∠BDF=CDE
DF=DE
,
∴△BDF≌△CDE;
②∵△BDF≌△CDE,
∴CE=BF;
③∵△BDF≌△CDE,
∴∠CED=∠BFD,
∴BF∥CE;
④∵AD是△ABC的中线,
∴S
△ABD
=S
△ACD
.
故选D.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
先利用SAS证明△BDF≌△CDE,再结合全等三角形的性质可得证②③,由于AD是△ABC的中线,由于等底同高,那么两个三角形的面积相等.
本题考查了全等三角形判定和性质,解题的关键是证明△BDF≌△CDE.
证明题.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )