试题
题目:
如图,已知AB=AC,AE=AF,BE与CF交于点D,则①△ABE≌△ACF,②△BDF≌△CDE,③D在∠BAC的平分线上,以上结论中,正确的是( )
A.只有①
B.只有②
C.只有①和②
D.①,②与③
答案
D
解:①∵AB=AC,AE=AF,∠A=∠A,
∴△ABE≌△ACF;
②∵△ABE≌△ACF,
∴∠C=∠B,
∵AB=AC,AE=AF,
∴CE=FB,
∵∠CDE=∠BDF,
∴△BDF≌△CDE;
③连接AD,
∵△BDF≌△CDE,
∴CD=BD,
∵AB=AC,AD=AD,
∴△ACD≌△ABD,
∴∠CAD=∠BAD,
即D在∠BAC的平分线上.
故选D.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
根据三角形全等的判定方法,①由SAS判定△ABE≌△ACF;②由AAS判定BDF≌△CDE;
③SAS判定△ACD≌△ABD,所以D在∠BAC的平分线上.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )