试题
题目:
如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于
1
2
EF
的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠CMA=25°,则∠C的度数为( )
A.100°
B.110°
C.120°
D.130°
答案
D
解:连接PF、PE,
由作法可知:AF=AE,PF=PE,
∵在△AFP和△AEP中
AF=AE
PE=PF
AP=AP
∴△AFP≌△AEP(SSS),
∴∠FAP=∠EAP,
∵AB∥CD,
∴∠BAM=∠CMA=25°,
∴∠CAP=25°,
∴∠C=180°-∠CMA-∠CAP=130°,
故选D.
考点梳理
考点
分析
点评
全等三角形的判定与性质;平行线的性质.
连接PE、PF,根据SSS证△AFP≌△AEP,推出∠FAP=∠EAP,求出∠FAP=∠EAP=∠C=25°,根据三角形内角和定理求出即可.
本题考查了平行线性质,三角形内角和定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.
找相似题
(2008·新疆)如图,△ABC中BC边上的高为h
1
,△DEF中DE边上的高为h
2
,下列结论正确的是( )
(2002·四川)以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等.
其中的真命题是( )
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为( )
如图,点B、F在CD上,∠C=∠D=90°,AB=EF,CF=BD,若∠A=35°,则∠DFE等于( )
如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF( )