试题

题目:
青果学院如图,在·ABCD中,E,F分别为AD和BC边上的一点,若再增加一个条件
AE=CF或ED=BF或EB∥DF
AE=CF或ED=BF或EB∥DF
,就可推得BE=DF.
答案
AE=CF或ED=BF或EB∥DF

解:根据平行四边形的性质可知AB∥DC,AB=BC,添加AE=CF或ED=BF或EB∥DF后可分别根据SAS、SAS、ASA判定△ABE≌△CDF,可推得BE=DF.增加一个条件:AE=CF或ED=BF或EB∥DF.
故答案为AE=CF或ED=BF或EB∥DF.
考点梳理
平行四边形的性质;全等三角形的判定与性质.
根据平行四边形的性质可知AB∥DC,AB=BC,结合三角形全等的条件(SSS,SAS,AAS,ASA),添加条件即可,答案不唯一,如AE=CF或ED=BF或EB∥DF.
主要考查了平行四边形的基本性质和全等三角形的判断.三角形全等的判定条件:SSS,SAS,AAS,ASA.
开放型.
找相似题