试题

题目:
(2007·朝阳区)已知:如图,平行四边形ABCD中,点E、F在AC上,
DF∥BE
DF∥BE
.在如下条件①AE=CF,②DF∥BE中,你认青果学院为再添加哪一个条件,可证出BE=DF.把你选择的条件添在题中的横线上,并完成你的证明.
(只需添加一个条件即可)
答案
DF∥BE

解:DF∥BE.
证明:∵DF∥BE,
∴∠DFC=∠BEA.
∵四边形ABCD是平行四边形,
∴CD=AB,∠DCF=∠BAE.
∴△CDF≌△ABE(AAS).
∴BE=DF.
考点梳理
平行四边形的性质;全等三角形的判定与性质.
本题既可以证明△CDF≌△ABE,也可以证明△ADF≌△CBE,相比证明前者条件运用更直接一些.
本题关键是利用平行四边形的性质结合添加的条件来证明三角形全等,从而得出结论.
证明题;开放型.
找相似题