试题

题目:
(2012·济南)(1)如图1,在·ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
(2)如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.
青果学院
答案
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
AD=CB
∠A=∠C
AE=CF

∴△ADE≌△CBF(SAS),
∴DE=BF;

(2)解:∵AB=AC,∠A=40°,
∴∠ABC=∠C=
180°-40°
2
=70°,
又BD是∠ABC的平分线,
∴∠DBC=
1
2
∠ABC=35°,
∴∠BDC=180°-∠DBC-∠C=75°.
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
AD=CB
∠A=∠C
AE=CF

∴△ADE≌△CBF(SAS),
∴DE=BF;

(2)解:∵AB=AC,∠A=40°,
∴∠ABC=∠C=
180°-40°
2
=70°,
又BD是∠ABC的平分线,
∴∠DBC=
1
2
∠ABC=35°,
∴∠BDC=180°-∠DBC-∠C=75°.
考点梳理
平行四边形的性质;全等三角形的判定与性质;等腰三角形的性质.
(1)根据四边形ABCD是平行四边形,利用平行四边形的性质得到一对边和一对角的对应相等,在加上已知的一对边的相等,利用“SAS”,证得△ADE≌△CBF,最后根据全等三角形的对应边相等即可得证;
(2)首先根据AB=AC,利用等角对等边和已知的∠A的度数求出∠ABC和∠C的度数,再根据已知的BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,最后根据三角形的内角和定理即可求出∠BDC的度数.
此题考查了平行四边形的性质,等腰三角形的性质,三角形的内角和定理,角平分线的定义以及全等三角形的性质与判定,熟练掌握定理与性质是解本题的关键.
证明题.
找相似题