试题
题目:
(2013·花都区一模)已知:四边形ABCD是平行四边形,点E是BC上的一点,且∠DAE=∠B
求证:△ABE是等腰三角形.
答案
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠DAE=∠B,
∴∠AEB=∠B,
∴AB=AE,
∴△ABE是等腰三角形.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠DAE=∠B,
∴∠AEB=∠B,
∴AB=AE,
∴△ABE是等腰三角形.
考点梳理
考点
分析
点评
专题
平行四边形的性质;等腰三角形的判定.
根据平行四边形性质得出AD∥BC,推出∠DAE=∠AEB=∠B,推出AB=AE,根据等腰三角形的判定推出即可.
本题考查了平行线性质,平行四边形的性质,等腰三角形的判定的应用,主要考查学生的推理能力.
证明题.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )