试题
题目:
(2002·岳阳)如图,已知·ABCD的对角线AC、BD相交于点O,过点O任作一直线分别交AD、CB的延长线于E、F,求证:OE=OF.
答案
证明:在·ABCD中,AO=CO,AD∥BC,
∴∠E=∠F,∠EAO=∠FCO,
在△AOE和△COF中,
∠E=∠F
∠EAO=∠FCO
AO=CO
,
∴△AOE≌△COF(AAS),
∴OE=OF.
证明:在·ABCD中,AO=CO,AD∥BC,
∴∠E=∠F,∠EAO=∠FCO,
在△AOE和△COF中,
∠E=∠F
∠EAO=∠FCO
AO=CO
,
∴△AOE≌△COF(AAS),
∴OE=OF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
根据平行四边形的对边平行可得AD∥BC,然后根据两直线平行,内错角相等可得∠E=∠F,∠EAO=∠FCO,又因为平行四边形的对角线互相平分,所以,AO=CO,然后利用“角角边”证明△AOE和△COF全等,根据全等三角形对应边相等即可证明.
本题考查了平行四边形的对边平行,对角线互相平分的性质,以及全等三角形的判定与性质,证明两边相等,就证明这两边所在的三角形全等,是几何证明中常用的方法,一定要熟练掌握.
证明题;压轴题.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )