试题
题目:
如图,AB∥CD,AD∥BC,则图中共有全等三角形
4
4
对.
答案
4
解:∵AB∥CD,AD∥BC,
∴∠CAD=∠ACB,∠BDA=∠DBC,∠BAC=∠DCA,∠ABD=∠CDB,
又∵AC、BD为公共边,
∴△ACD≌△CAB、△BAD≌△DCB(ASA);
∴AD=BC,AB=CD,
∴△AOD≌△COB、△AOB≌△COD(ASA).
所以全等三角形有:△AOD≌△COB、△AOB≌△COD、△ACD≌△CAB、△BAD≌△DCB,共4对;
故答案是:4.
考点梳理
考点
分析
点评
全等三角形的判定.
根据AB∥CD,AD∥BC可得到相等的角,再根据公共边AC、BD易证得:△ACD≌△CAB、△BAD≌△DCB(ASA);由上可得AD=BC、AB=CD,再根据平行线确定的角相等可证得:△AOD≌△COB、△AOB≌△COD(ASA).
本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
找相似题
(2008·莱芜)如图,点F是梯形ABCD的下底BC上一点,若将△DFC沿DF进行折叠,点C恰好能与
AD上的点E重合,那么四边形CDEF( )
(2006·临沂)如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有( )
(2002·鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
(1999·山西)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为( )
(2013·蒙山县二模)如图所示,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是( )