试题

题目:
青果学院如图,AB∥CD,AD∥BC,则图中共有全等三角形
4
4
对.
答案
4

解:∵AB∥CD,AD∥BC,
∴∠CAD=∠ACB,∠BDA=∠DBC,∠BAC=∠DCA,∠ABD=∠CDB,
又∵AC、BD为公共边,
∴△ACD≌△CAB、△BAD≌△DCB(ASA);
∴AD=BC,AB=CD,
∴△AOD≌△COB、△AOB≌△COD(ASA).
所以全等三角形有:△AOD≌△COB、△AOB≌△COD、△ACD≌△CAB、△BAD≌△DCB,共4对;
故答案是:4.
考点梳理
全等三角形的判定.
根据AB∥CD,AD∥BC可得到相等的角,再根据公共边AC、BD易证得:△ACD≌△CAB、△BAD≌△DCB(ASA);由上可得AD=BC、AB=CD,再根据平行线确定的角相等可证得:△AOD≌△COB、△AOB≌△COD(ASA).
本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
找相似题