试题
题目:
(2006·日照)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=
2
2
,则平行四边形ABCD的周长是
8
8
.
答案
8
解:∵∠EAF=45°,
∴∠C=360°-∠AEC-∠AFC-∠EAF=135°,
∴∠B=∠D=180°-∠C=45°,
则AE=BE,AF=DF,
设AE=x,则AF=2
2
-x,
在Rt△ABE中,
根据勾股定理可得,AB=
2
x
同理可得AD=
2
(2
2
-x)
则平行四边形ABCD的周长是2(AB+AD)=2[
2
x+
2
(2
2
-x)]=8
故答案为8.
考点梳理
考点
分析
点评
专题
平行四边形的性质.
要求平行四边形的周长就要先求出AB、AD的长,利用平行四边形的性质和勾股定理即可求出.
解题关键是利用平行四边形的性质结合等角对等边、勾股定理来解决有关的计算和证明.
压轴题.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )