试题
题目:
如图,E、F是平行四边形ABCD对角线AC上两点,AE=CF.证明(1)△ABE≌△CDF;(2)BE∥DF.
答案
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,CD=AB,
∴∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵△ABE≌△CDF,
∴∠AEB=∠CFD,
∴∠CEB=∠AFD,
∴BE∥DF.
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,CD=AB,
∴∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵△ABE≌△CDF,
∴∠AEB=∠CFD,
∴∠CEB=∠AFD,
∴BE∥DF.
考点梳理
考点
分析
点评
平行四边形的性质;全等三角形的判定.
(1)由平行四边形的性质可得,AB∥CD,CD=AB,根据两直线平行内错角相等可得∠BAE=∠DCF,已知AE=CF,从而可根据SAS判定△ABE≌△CDF.
(2)根据△ABE≌△CDF,可得∠AEB=∠CFD,再根据邻补角的定义和平行线的判定即可证明.
此题主要考查学生对平行四边形的性质及全等三角形的判定方法的综合运用能力.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )