试题
题目:
如图,·ABCD的周长为16cm,AC、BD相交于点O,把它沿过点O的直线EF折叠,使点C与点A重合,连接CE,求△DCE的周长.
答案
解:∵·ABCD的周长为16cm,
∴AD+DC=8cm,
由折叠的性质得:AE=EC,
∴△DCE的周长=DC+CE+ED=AD+DC=8,
即△DCE的周长为8.
解:∵·ABCD的周长为16cm,
∴AD+DC=8cm,
由折叠的性质得:AE=EC,
∴△DCE的周长=DC+CE+ED=AD+DC=8,
即△DCE的周长为8.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);平行四边形的性质.
根据折叠的性质得出AE=EC,从而△DCE的周长可表示为(AD+DC),再由平行四边形的对边相等可求出(AD+DC),继而得出△DCE的周长.
此题考查了折叠变换的知识,解答本题的关键是根据折叠的性质得出AE=EC,将△DCE的周长转化为(AD+DC),难度一般.
数形结合.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )