试题
题目:
平行四边形的边长为5,则它的对角线长可能是( )
A.4和6
B.2和12
C.4和8
D.4和3
答案
C
解:A、对角线一半分别是2和3,2+3=5,故不能构成三角形,故本选项错误;
B、对角线一半分别是1和6,6-1=5,故不能构成三角形,故本选项错误.
C、对角线一半分别是2和4,符合三角形的三边关系,能构成三角形,故本选项正确;
D、对角线一半分别是2和
3
2
,2+3<5,故不能构成三角形,故本选项错误.
故选C.
考点梳理
考点
分析
点评
平行四边形的性质;三角形三边关系.
根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.
本题主要考查了平行四边形的性质及三角形的三边关系,注意平行四边形中两条对角线的一半和一边构成三角形,另外要熟练三角形的三边关系.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )