试题
题目:
平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A.4:3:3:4
B.7:5:5:7
C.4:3:2:1
D.7:5:7:5
答案
D
解:∵四边形ABCD是平行四边形,
∴∠A=∠C,∠B=∠D,AB∥CD,
∴∠B+∠C=180°,∠A+∠D=180°,
即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D,
故符合题意的只有D.
故选D.
考点梳理
考点
分析
点评
平行四边形的性质.
根据平行四边形的性质得到∴∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.
本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据平行四边形的先Z进行判断是解此题的关键,题目比较典型,难度适中.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )