试题
题目:
如图所示,在·ABCD中,AC为对角线,AE⊥BC,CF⊥AD,垂足分别为E,F,则图中的全等三角形共( )
A.4对
B.3对
C.2对
D.5对
答案
B
解:∵四边形ABCD是平行四边形
∴AB=CD,AD=BC,∠B=∠D,AD∥BC,AB∥CD
∴∠DAC=∠BCA,∠BAC=∠DCA
∵∠B=∠D、AB=CD、∠AEB=∠CFD=90°
∴△ABE≌△FCD①
∵AC=AC、∠ABC=∠CDA、∠ACB=∠CAD
∴△ABC≌△DCA②
∵AC=AC、AE=FC、AF=EC
∴△AFC≌△AEC③
因此共有3对全等三角形.
故选B.
考点梳理
考点
分析
点评
全等三角形的判定;平行四边形的性质.
已知四边形ABCD是平行四边形,可得出BA=CD、AD=BC、AF=CE、AE=CF,∠DAC=∠BCA、∠B=∠D、∠BAC=∠DCA;可根据这些条件进行判断.
由∠B=∠D、AB=CD、∠AEB=∠CFD=90°,可推出△ABE≌△FCD;(AAS)
由AC=AC、∠ABC=∠CDA、∠ACB=∠CAD,可得出△ABC≌△DCA;(AAS)
由AC=AC、AE=FC、AF=EC,可得出△AFC≌△AEC;(SAS).
因此共有3对全等三角形.
本题考查的是平行四边形的性质和全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )