试题
题目:
如图所示,在·ABCD中,BD=CD,∠C=70°,AE⊥BD于E,则∠DAE为( )
A.20°
B.25°
C.30°
D.35°
答案
A
解:在△DBC中,
∵BD=CD,∠C=70°,
∴∠DBC=∠C=70°,
又∵在·ABCD中,AD∥BC,
∴∠ADB=∠DBC=70°,
又∵AE⊥BD,
∴∠DAE=90°-∠ADB=90°-70°=20°.
故选A.
考点梳理
考点
分析
点评
专题
平行四边形的性质;等腰三角形的性质;直角三角形的性质.
因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.
此题主要考查了平行四边形的基本性质,以及等腰三角形的性质,难易程度适中.
计算题.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )