试题
题目:
(2013·本溪)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:
2
=1.41,
3
=1.73)
答案
解:过点D作DE⊥AB于点E,
∵∠CDB=75°,
∴∠CBD=15°,∠EBD=15°,
在Rt△CBD和Rt△EBD中,
∵
∠CBD=∠EBD
∠DCB=∠DEB
BD=BD
,
∴△CBD≌△EBD,
∴CD=DE,
在Rt△ADE中,∠A=60°,AD=40米,
则DE=ADsin60°=20
3
米,
故AC=AD+CD=AD+DE=(40+20
3
)米,
在Rt△ABC中,BC=ACtan∠A=(40
3
+60)米,
则速度=
40
3
+60
10
=4
3
+6≈12.92米/秒,
∵12.92米/秒=46.512千米/小时,
∴该车没有超速.
解:过点D作DE⊥AB于点E,
∵∠CDB=75°,
∴∠CBD=15°,∠EBD=15°,
在Rt△CBD和Rt△EBD中,
∵
∠CBD=∠EBD
∠DCB=∠DEB
BD=BD
,
∴△CBD≌△EBD,
∴CD=DE,
在Rt△ADE中,∠A=60°,AD=40米,
则DE=ADsin60°=20
3
米,
故AC=AD+CD=AD+DE=(40+20
3
)米,
在Rt△ABC中,BC=ACtan∠A=(40
3
+60)米,
则速度=
40
3
+60
10
=4
3
+6≈12.92米/秒,
∵12.92米/秒=46.512千米/小时,
∴该车没有超速.
考点梳理
考点
分析
点评
勾股定理的应用.
过点D作DE⊥AB于点E,证明△BCD≌△BED,在Rt△ADE中求出DE,继而得出CD,计算出AC的长度后,在Rt△ABC中求出BC,继而可判断是否超速.
本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,求出BC的长度,需要多次解直角三角形,有一定难度.
找相似题
(2013·安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
(2010·新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )
(2006·湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )
(2006·内江)有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是( )
(2002·滨州)如图,沿AC方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=210m,∠D=30°,要正好能使A、C、E成一直线,那么E、D两点的距离等于( )