试题
题目:
在下列性质中,平行四边形不一定具有的是( )
A.对边相等
B.对边平行
C.对角互补
D.内角和为360°
答案
C
解:A、平行四边形的对边相等,故本选项正确;
B、平行四边形的对边平行,故本选项正确;
C、平行四边形的对角相等不一定互补,故本选项错误;
D、平行四边形的内角和为360°,故本选项正确;
故选C.
考点梳理
考点
分析
点评
专题
平行四边形的性质.
根据平行四边形的性质得到,平行四边形邻角互补,对角相等,对边相等.而对角却不一定互补.
本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分
常规题型.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )