试题
题目:
二棵树相距8米,二树高分别是8米、2米,一只小鸟由一棵树梢飞到另一棵树梢,则它至少飞了
10
10
米.
答案
10
解:由题意知:EB=CD=2米,AE=8米,BC=8米,
则AB=AE-BE=AE-CD=6米,
在直角△ABC中,AC为斜边,
且AB=6米,BC=8米,
根据BC
2
+AB
2
=AC
2
,
求得:AC=10米,
∴小鸟飞的最短距离为10米,
故答案为10.
考点梳理
考点
分析
点评
专题
勾股定理的应用.
根据两点之间线段最短的定理,准确的作出小鸟从一棵树梢飞到另一棵树梢的路线为最短距离(直线距离)的图形,构建直角三角形ADE,根据勾股定理即可求解.
本题考查了勾股定理在实际生活中的应用,本题中构建直角△ABC是解题的关键.
计算题.
找相似题
(2013·安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
(2010·新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )
(2006·湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )
(2006·内江)有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是( )
(2002·滨州)如图,沿AC方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=210m,∠D=30°,要正好能使A、C、E成一直线,那么E、D两点的距离等于( )