试题
题目:
如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交AB于点F,∠ADC的平分线DG交边AB于点G.
(1)若AB=6,BC=4,求FG的长.
(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.
答案
(1)解:∵四边形ABCD为平行四边形,
∴AB∥CD,AD∥BC,AD=BC.
∴∠AGD=∠CDG,∠DCF=∠BFC.
∵DG、CF分别平分∠ADC和∠BCD,
∴∠CDG=∠ADG,∠DCF=∠BCF.
∴∠ADG=∠AGD,∠BFC=∠BCF
∴AD=AG=6,BF=BC=4.
∴AF=BG,
∴FG=6-4=2;
(2)解:∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵DG、CF分别平分∠ADC和∠BCD,
∴∠EDC+∠ECD=90°.
∴∠DEC=90°.
∴∠FEG=90°.
因此我们只要保证添加的条件使得EF=EG就可以了.
我们可以添加∠GFE=∠FGD,
四边形ABCD为矩形,DG=CF等等.
(1)解:∵四边形ABCD为平行四边形,
∴AB∥CD,AD∥BC,AD=BC.
∴∠AGD=∠CDG,∠DCF=∠BFC.
∵DG、CF分别平分∠ADC和∠BCD,
∴∠CDG=∠ADG,∠DCF=∠BCF.
∴∠ADG=∠AGD,∠BFC=∠BCF
∴AD=AG=6,BF=BC=4.
∴AF=BG,
∴FG=6-4=2;
(2)解:∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵DG、CF分别平分∠ADC和∠BCD,
∴∠EDC+∠ECD=90°.
∴∠DEC=90°.
∴∠FEG=90°.
因此我们只要保证添加的条件使得EF=EG就可以了.
我们可以添加∠GFE=∠FGD,
四边形ABCD为矩形,DG=CF等等.
考点梳理
考点
分析
点评
平行四边形的性质;等腰三角形的判定与性质;等腰直角三角形.
(1)由角平分线知∠ADG=∠CDG,由平行知∠CDG=∠AGD所以,∠ADG=∠AGD,即AD=AG,同理BF=BC,又AD=BC,所以AG=BF,去掉公共部分,则有AF=GB,进而求出FG的长;
(2)由于DG、CF是平行四边形一组邻角的平分线,所以△EFG已经是直角三角形了,要成为等腰直角三角形,则必须有EF=EG或者∠EFG=∠EGF即可.
此题考查了平行四边形的基本性质,以及直角三角形的判定,难易程度适中.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )