试题
题目:
如图,在·ABCD中,BD为对角线,EF垂直平分BD分别交AD、BC的于点E、F,交BD于点O.
(1)试说明:BF=DE;
(2)试说明:△ABE≌△CDF;
(3)如果在·ABCD中,AB=5,AD=10,有两动点P、Q分别从B、D两点同时出发,沿△BAE和△DFC各边运动一周,即点P自B→A→E→B停止,点Q自D→F→C→D停止,点P运动的路程是m,点Q运动的路程是n,当四边形BPDQ是平行四边形时,求m与n满足的数量关系.(画出示意图)
答案
解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ODE=∠OBF,
∵EF垂直平分BD,
∴OB=OD,
在△OBF和△ODE中,
∠OBF=∠ODE
OB=OD
∠BOF=∠DOE
,
∴△BOF≌△DOE(ASA),
∴BF=DE;
(2)∵四边新ABCD是平行四边形,
∴AB=CD,∠A=∠C,AD=BC,
∵BF=DE,
∴AE=CF,
在△ABE和△CDF中,
AB=CD
∠A=∠C
AE=CF
,
∴△ABE≌△CDF(SAS),
(3)解:∵EF垂直平分BD,
∴BF=DF,
∵△ABE≌△CDF,
∴DF=BE,AE=CF,
∴△DFC的周长是DF+CF+CD=BF+CF+CD=BC+CD=15,
△ABE的周长也是15,
①当P在AB上,Q在CD上,
∵AB∥CD,
∴∠BPO=∠DQO,
∵∠POB=∠DOQ,OB=OD,
∴△BPO≌△DQO,
∴BP=DQ,
∴m+n
=BP+DF+CF+CQ
=DF+CF+CQ+DQ
=DF+CF+CD
=15
②当P在AE上,Q在CF上,
∵AD∥BC,
∴∠PEO=∠QFO,
∵△EOD≌△FOB,
∴OE=OF,
∵∠PEO=∠QFO,∠EOP=∠FOQ,
∴△PEO≌△QFO,
∴PE=QF,
∵AE=CF,
∴CQ=AP,
m+n
=AB+AP+DF+PQ
=CD+CQ+DF+FQ
=DF+CF+CD
=15;
③当P在BE上,Q在DF上,
∵AD=BC,AE=CF,
∴DE=BF,
∵DE∥BF,
∴四边形BEDF是平行四边形,
∴BE=DF,BE∥DF,
∴∠PEO=∠FQO,
∵∠EOP=∠FOQ,OE=OF,
∴△PEO≌△FQO,
∴PE=FQ,
∴m+n
=AB+AE+PE+DQ
=CD+CF+QF+DQ
=DF+CF+CD
=15.
解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ODE=∠OBF,
∵EF垂直平分BD,
∴OB=OD,
在△OBF和△ODE中,
∠OBF=∠ODE
OB=OD
∠BOF=∠DOE
,
∴△BOF≌△DOE(ASA),
∴BF=DE;
(2)∵四边新ABCD是平行四边形,
∴AB=CD,∠A=∠C,AD=BC,
∵BF=DE,
∴AE=CF,
在△ABE和△CDF中,
AB=CD
∠A=∠C
AE=CF
,
∴△ABE≌△CDF(SAS),
(3)解:∵EF垂直平分BD,
∴BF=DF,
∵△ABE≌△CDF,
∴DF=BE,AE=CF,
∴△DFC的周长是DF+CF+CD=BF+CF+CD=BC+CD=15,
△ABE的周长也是15,
①当P在AB上,Q在CD上,
∵AB∥CD,
∴∠BPO=∠DQO,
∵∠POB=∠DOQ,OB=OD,
∴△BPO≌△DQO,
∴BP=DQ,
∴m+n
=BP+DF+CF+CQ
=DF+CF+CQ+DQ
=DF+CF+CD
=15
②当P在AE上,Q在CF上,
∵AD∥BC,
∴∠PEO=∠QFO,
∵△EOD≌△FOB,
∴OE=OF,
∵∠PEO=∠QFO,∠EOP=∠FOQ,
∴△PEO≌△QFO,
∴PE=QF,
∵AE=CF,
∴CQ=AP,
m+n
=AB+AP+DF+PQ
=CD+CQ+DF+FQ
=DF+CF+CD
=15;
③当P在BE上,Q在DF上,
∵AD=BC,AE=CF,
∴DE=BF,
∵DE∥BF,
∴四边形BEDF是平行四边形,
∴BE=DF,BE∥DF,
∴∠PEO=∠FQO,
∵∠EOP=∠FOQ,OE=OF,
∴△PEO≌△FQO,
∴PE=FQ,
∴m+n
=AB+AE+PE+DQ
=CD+CF+QF+DQ
=DF+CF+CD
=15.
考点梳理
考点
分析
点评
平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质.
(1)根据ASA证△EOD≌△FOB即可;
(2)推出DE=BF,根据平行四边形性质求出∠A=∠C,推出AE=CF,根据SAS证△ABE≌△CDF即可;
(3)分为三种情况,求出△DFC的周长,每种情况m+n都等于△DFC的周长.
本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质和判定的综合运用.此题难度较大,注意掌握数形结合思想的应用.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )