试题
题目:
已知:如图,平行四边形ABCD中,E、F分别为AB、CD上的点,且AE=CF,EF与BD交于点O.
求证:OE=OF.
答案
证明:在·ABCD中,AB∥CD,
∴∠FDO=∠EBO,∠DFO=∠BEO,
∵AB=CD,AE=CF,
∴AB-AE=CD-CF,即BE=DF,
在△BOE和△DOF中,
∠FDO=∠EBO
BE=DF
∠DFO=∠BEO
,
∴△BOE≌△DOF,
∴OE=OF.
证明:在·ABCD中,AB∥CD,
∴∠FDO=∠EBO,∠DFO=∠BEO,
∵AB=CD,AE=CF,
∴AB-AE=CD-CF,即BE=DF,
在△BOE和△DOF中,
∠FDO=∠EBO
BE=DF
∠DFO=∠BEO
,
∴△BOE≌△DOF,
∴OE=OF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
根据平行四边形的对边相等且平行可得出∠FDO=∠EBO,∠DFO=∠BEO,及AB-AE=CD-CF,从而利用三角形全等的判定定理ASA可判定△BOE≌△DOF,继而得出结论.
本题考查了平行四边形的性质及三角形全等的判定与性质,用到的知识点为:①平行四边形的对边相等且平行,②SSS、SAS、ASA、AAS可以判定三角形全等,③全等三角形的对应边、对应角分别相等.
证明题.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )