试题
题目:
已知:如图,在·ABCD中,∠BCD的平分线CE交AD于E,∠ABC的平分线BG交CE于F,交AD于G.
(1)试找出图中的等腰三角形,并选择一个加以说明.
(2)试说明:AE=DG.
(3)若BG将AD分成3:2的两部分,且AD=10,求·ABCD的周长.
答案
解:(1)△ABG,△DCE是等腰三角形.
在平行四边形ABCD中,则AD∥BC,
∴∠AGB=∠GBC,
又BG平分∠ABC,
∴∠ABG=∠CBG,
∴∠ABG=∠AGB,即AB=AG,
∴△ABG是等腰三角形;
(2)由(1)可得AB=AG=CD=DE,
∴AE=DG;
(3)假设AG:GD=3:2,
∵AD=10,∴AB=AG=
3
5
AD=6,
∴平行四边形的周长为2(10+6)=32;
当AG:GD=2:3时,则AB=AG=
2
5
AD=4,
∴平行四边形的周长为2(10+4)=28.
所以平行四边形ABCD的周长为32或28.
解:(1)△ABG,△DCE是等腰三角形.
在平行四边形ABCD中,则AD∥BC,
∴∠AGB=∠GBC,
又BG平分∠ABC,
∴∠ABG=∠CBG,
∴∠ABG=∠AGB,即AB=AG,
∴△ABG是等腰三角形;
(2)由(1)可得AB=AG=CD=DE,
∴AE=DG;
(3)假设AG:GD=3:2,
∵AD=10,∴AB=AG=
3
5
AD=6,
∴平行四边形的周长为2(10+6)=32;
当AG:GD=2:3时,则AB=AG=
2
5
AD=4,
∴平行四边形的周长为2(10+4)=28.
所以平行四边形ABCD的周长为32或28.
考点梳理
考点
分析
点评
专题
平行四边形的性质;等腰三角形的判定与性质.
(1)由平行四边形的性质及角平分线的性质即可得出△ABG,△DCE是等腰三角形;
(2)由于BG将AD分成3:2的两部分,所以应分两种情况,即AG:GD=3:2,或AG:GD=2:3,进而求解即可.
本题主要考查平行四边形的性质及角平分线的性质,能够运用平行四边形的性质求解一些简单的证明、计算问题.
常规题型.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )