试题

题目:
青果学院如图,在·ABCD中,BD为对角线,点E、O、F分别是AB、BD、BC的中点,且OE=3,OF=2,则·ABCD的周长是(  )



答案
B
解:∵点E、O、F分别是AB、BD、BC的中点,
∴AD=2OE=6,CD=2OF=4,
又四边形ABCD是平行四边形,
∴AB=2CD=4,BC=2AD=6,
∴·ABCD的周长是(6+4)×2=20.
故选B.
考点梳理
三角形中位线定理;平行四边形的性质.
首先根据三角形的中位线定理求得AD、CD的长,再根据平行四边形的性质求解.
此题综合运用了三角形的中位线定理和平行四边形的性质.
找相似题