试题
题目:
平行四边形ABCD中,AB=2BC,BE⊥AD于点E,F是DC中点.求证:∠EFC=3∠DEF.
答案
证明:取AB中点G,连接FG交BE于O,连接FB,则AD∥FG,BE⊥FG,
∵G是AB中点,
∴O是BE中点,
∴△FEB是等腰三角形(三线合一的性质),
∴∠EFO=∠BFO,
又∵CF=
1
2
CD=CB,
∴四边形BCFG是菱形,
∴∠GFB=∠CFB,
∴FO,FB是∠EFC的三等分线,
∴DEF=∠EFO=
1
3
∠DEF,
故可得∠EFC=3∠DEF.
证明:取AB中点G,连接FG交BE于O,连接FB,则AD∥FG,BE⊥FG,
∵G是AB中点,
∴O是BE中点,
∴△FEB是等腰三角形(三线合一的性质),
∴∠EFO=∠BFO,
又∵CF=
1
2
CD=CB,
∴四边形BCFG是菱形,
∴∠GFB=∠CFB,
∴FO,FB是∠EFC的三等分线,
∴DEF=∠EFO=
1
3
∠DEF,
故可得∠EFC=3∠DEF.
考点梳理
考点
分析
点评
专题
平行四边形的性质.
取AB中点G,连接FG交BE于O,连接FB,利用三线合一的性质可判断出△FEB是等腰三角形,然后根据菱形及平行四边形的性质得出FO,FB是∠EFC的三等分线,继而可证得结论.
本题考查了平行四边形及菱形的性质,作出AD的平行线FG是解答本题的关键,要求我们熟练掌握等腰三角形的三线合一性质.
证明题.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )