试题
题目:
如图,平行四边形ABCD中,AE⊥BC,AF⊥DC,AB:AD=2:3,∠BAD=2∠ABC,则CF:FD的结果为( )
A.1:2
B.1:3
C.2:3
D.3:4
答案
B
解:∵AD∥BC,
∴∠BAD+∠ABC=180°,
又∠BAD=2∠ABC,
∴∠BAD=120°,∠ABC=60°.
根据平行四边形的对角相等,得:∠D=∠ABC=60°,
在Rt△AFD中,根据30°所对的直角边是斜边的一半,得:DF=
1
2
AD,
又AB:AD=2:3,则CD=
2
3
AD,CF=CD-DF=
1
6
AD,
故CF:FD=
1
6
:
1
2
=1:3.
故选B.
考点梳理
考点
分析
点评
平行四边形的性质.
由平行四边形的性质得∠BAD+∠ABC=180°,结合已知∠BAD=2∠ABC,可推出特殊直角三角形,确定FD与AD的关系,再由AB=CD及已知AB:AD=2:3,确定CD与AD的关系,用CF=CD-DF,求CF:FD.
本题考查了平行四边形的性质,运用了平行四边形的邻角互补、平行四边形的对角相等、平行四边形的对边相等的性质.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )