试题

题目:
在·ABCD中,M为CD的中点,如DC=2AD,则AM、BM夹角度数是(  )



答案
A
青果学院解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AD=BC,
∴∠DAB+∠ABC=180°,∠MAB=∠DMA,∠MBA=∠BMC,
∵M为CD的中点,如DC=2AD,
∴AD=DM=CM=BC,
∴∠DAM=∠DMA,∠MBC=∠BMC,
∴∠MAB+∠MBA=90°,
∴∠AMB=90°.
∴AM、BM夹角度数是90°.
考点梳理
平行四边形的性质.
如图,由四边形ABCD是平行四边形,可得AB∥CD,AD=BC;由M为CD的中点,如DC=2AD,易得AD=DM=CM=BC,所以∠DAM=∠DMA,∠MBC=∠BMC;又因为∠MAB=∠DMA,∠MBA=∠BMC,易得∠MAB+∠MBA=90°,所以∠AMB=90°.
此题考查了平行四边形的性质与等腰梯形的判定与性质.此题有一定的综合性,但难度不大.解题时要注意数形结合思想的应用.
数形结合.
找相似题