试题
题目:
(2006·莱芜)在△MNB中,BN=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则四边形ABCD的周长是( )
A.24
B.18
C.16
D.12
答案
D
解:在平行四边形ABCD中CD∥AB,AD∥BC,
∴∠M=∠NDC,∠N=∠MDA,
∵∠NDC=∠MDA,
∴∠M=∠N=∠NDC=∠MDA,
∴MB=BN=6,CD=CN,AD=MA,
∴四边形ABCD的周长=AB+BC+CD+AD=MA+AB+BC+CN=MB+BN=2BN=12.
故选D.
考点梳理
考点
分析
点评
平行四边形的性质.
本题利用了平行四边形的性质,两组对边分别平行,利用两直线平行得出同位角相等后,再根据已知条件判断出BM=BN,从而四边形ABCD的周长=BM+BN=2BN而求解.
要求周长就要先求出四边的长,要求四边的长,就要根据平行四边形的性质和已知条件计算.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )