试题
题目:
(2008·邵阳)如图,将平行四边形ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是( )
A.AF=EF
B.AB=EF
C.AE=AF
D.AF=BE
答案
C
解:∵平行四边形ABCD沿AE翻折
∴△ABE≌△AFE,
∴AB=AF,BE=EF,
∠AEB=∠AEF,
∵AD∥BC,
∴∠AEB=∠EAF,
∴∠AEF=∠EAF,
∴AF=EF,
∴AF=BE
∴四边形ABEF为平行四边形,
∴AB=EF=AF=BE,
∴以上结论中只有C不成立.
故选C.
考点梳理
考点
分析
点评
平行四边形的性质;翻折变换(折叠问题).
根据平行四边形的性质及折叠变换进行推理,可知A、B、D均成立,只有C不成立.
已知折叠问题就是已知图形的全等,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.
找相似题
(2013·益阳)如图,在平行四边形ABCD中,下列结论中错误的是( )
(2013·襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )
(2013·湘西州)如图,在·ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是( )
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·乐山)如图,点E是·ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则·ABCD的周长为( )