试题
题目:
已知四边形ABCD是平行四边形,BE=DF,求证:四边形AECF为平行四边形.
答案
证明:∵四边形ABCD平行四边形
∴AD=BC.
又∵BE=DF,
∴AF=EC.
又∵AF∥EC,
∴四边形AECF是平行四边形.
证明:∵四边形ABCD平行四边形
∴AD=BC.
又∵BE=DF,
∴AF=EC.
又∵AF∥EC,
∴四边形AECF是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质.
在·ABCD中,AD=BC,又BE=DF,可得:AF=EC,所以AF平行且等于EC,根据平行四边形的判定,可得出四边形AECF是平行四边形.
此题主要要掌握平行四边形的判定,本题运用到的是一组对边平行且相等的四边形是平行四边形.
证明题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )