试题
题目:
如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E、F,连接ED,BF.求证:∠1=∠2.
答案
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠BAE=∠DCF.
又∵BE∥DF,
∴∠BEF=∠EFD,
∵∠BEF+∠AEB=180°,
∠EFD+∠DFC=180°,
∴∠AEB=∠CFD.
∴△ABE≌△CDF(AAS).
∴BE=DF.
∴四边形BFDE是平行四边形.
∴DE∥BF.
∴∠1=∠2.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠BAE=∠DCF.
又∵BE∥DF,
∴∠BEF=∠EFD,
∵∠BEF+∠AEB=180°,
∠EFD+∠DFC=180°,
∴∠AEB=∠CFD.
∴△ABE≌△CDF(AAS).
∴BE=DF.
∴四边形BFDE是平行四边形.
∴DE∥BF.
∴∠1=∠2.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质;平行四边形的判定与性质.
根据平行四边形的对边平行且相等,得AB=CD,AB∥CD,再根据平行线的性质,得∠BAE=∠DCF,∠AEB=∠CFD,由AAS证明△ABE≌△CDF,根据全等三角形的对应边相等,得BE=DF,从而得出四边形BFDE是平行四边形,根据两直线平行内错角相等证得∠1=∠2.
本题考查的是利用平行四边形的性质结合三角形全等来解决有关角相等的证明.
证明题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )