试题
题目:
已知:如图,在·ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.
求证:四边形ABOE是平行四边形.
答案
证明:∵·ABCD中,对角线AC交BD于点O,
∴OB=OD,
又∵四边形AODE是平行四边形,
∴AE∥OD且AE=OD,
∴AE∥OB且AE=OB,
∴四边形ABOE是平行四边形.
证明:∵·ABCD中,对角线AC交BD于点O,
∴OB=OD,
又∵四边形AODE是平行四边形,
∴AE∥OD且AE=OD,
∴AE∥OB且AE=OB,
∴四边形ABOE是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质.
因为·ABCD,OB=OD,又AODE是平行四边形,AE=OD,所以AE=OB,又AE∥OD,根据平行四边形的判定,可推出四边形ABOE是平行四边形.
此题考查了行四边形的判定定理:有一组对边平行且相等的四边形是平行四边形.
证明题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )