试题

题目:
青果学院如图,平行四边形ABCD的两条对角线AC与BD相交于点O,E,F是BD上的两点,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.
答案
证明:∵四边形ABCD为平行四边形,
∴OA=OC,OB=OD.
∵BE=DF,
∴OE=OF.
∴四边形AECF为平行四边形.
证明:∵四边形ABCD为平行四边形,
∴OA=OC,OB=OD.
∵BE=DF,
∴OE=OF.
∴四边形AECF为平行四边形.
考点梳理
平行四边形的判定与性质.
根据两条对角线相互平分的四边形是平行四边形即可证明四边形AECF是平行四边形.
此题主要考查了平行四边形的判定与性质,平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
证明题.
找相似题