试题
题目:
如图1,在Rt△ABC中,∠ACB=90°,分别以AB、AC为底边向△ABC的外侧作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.试探究线段FD、FE的数量关系,并加以证明.
说明:如果你经历反复探索,没有找到解决问题的方法,可以从图2、3中选取一个,并分别补充条件∠CAB=45°、∠CAB=30°后,再完成你的证明.
答案
解:猜想:DF=FE.
证明:过点D作DN⊥AB于N,连接NE.
∵DA=DB,DN⊥AB,
∴BN=AN,
过N作NE⊥AC,于点G,
∴∠NGA=90°,
∵∠BCA=90°,
∴NG∥BC,
∵BN=AN,
∴CG=GA,
∵CE=AE,
∴EG⊥AC,
∴N、G、E在一条直线上,
∵DA⊥CA,NE⊥AC,
∴NE∥AD,
又∵DN⊥AB,EA⊥BA,
∴DN∥EA,
∴四边形DNEA是平行四边形,
∴DF=EF(平行四边形对角线互相平分).
解:猜想:DF=FE.
证明:过点D作DN⊥AB于N,连接NE.
∵DA=DB,DN⊥AB,
∴BN=AN,
过N作NE⊥AC,于点G,
∴∠NGA=90°,
∵∠BCA=90°,
∴NG∥BC,
∵BN=AN,
∴CG=GA,
∵CE=AE,
∴EG⊥AC,
∴N、G、E在一条直线上,
∵DA⊥CA,NE⊥AC,
∴NE∥AD,
又∵DN⊥AB,EA⊥BA,
∴DN∥EA,
∴四边形DNEA是平行四边形,
∴DF=EF(平行四边形对角线互相平分).
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;等腰三角形的性质.
本题的解题思路是通过利用等腰三角形的性质,构建平行四边形先根据平行四边形的判定,证明所构建的图形是平行四边形,从而得出答案.
此题主要考查了平行四边形的性质与判定等知识点,在做题时要注意隐含条件的运用.
压轴题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )