试题
题目:
如图,在平行四边形ABCD中,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.
答案
证明:方法一:∵AE=AD,CF=CB,
∴∠E=∠ADE,∠CBF=∠F.
在·ABCD中,∠ADC=∠ABC,
∴∠ADE=∠CBF.
∴∠E=∠F.
在·ABCD中,CD∥AB,
∴∠E+∠EAF=180°,
∴∠F+∠EAF=180°.
∴AE∥CF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
方法二(主要步骤):
∵四边形ABCD是平行四边形,
∴AD=BC,∠ADC=∠ABC,
又∵AE=AD,CF=CB,
∴AE=AD=CF=CB,
∴∠E=∠ADE=∠F=∠CBF,
∴△ADE≌△CBF(SAS),
∴DE=BF,
∴CE=AF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
证明:方法一:∵AE=AD,CF=CB,
∴∠E=∠ADE,∠CBF=∠F.
在·ABCD中,∠ADC=∠ABC,
∴∠ADE=∠CBF.
∴∠E=∠F.
在·ABCD中,CD∥AB,
∴∠E+∠EAF=180°,
∴∠F+∠EAF=180°.
∴AE∥CF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
方法二(主要步骤):
∵四边形ABCD是平行四边形,
∴AD=BC,∠ADC=∠ABC,
又∵AE=AD,CF=CB,
∴AE=AD=CF=CB,
∴∠E=∠ADE=∠F=∠CBF,
∴△ADE≌△CBF(SAS),
∴DE=BF,
∴CE=AF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质.
根据已知的平行四边形的性质和等边对等角的性质,结合已知条件,可以证明△ADE≌△CBF,根据全等三角形的性质,可以证明四边形AFCE的两组对边分别平行,或证明四边形的一组对边平行且相等,或证明四边形的两组对角分别相等,则可证明该四边形是平行四边形.
此题综合运用了平行四边形的性质和判定,全等三角形的性质和判定.
证明题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )