试题
题目:
如图,在△ABC中,AD=BD,AE=CE.求证:DE∥BC,
DE=
1
2
BC
.
答案
证明:
延长DE到Q,使DE=EQ,连接CQ,
∵AE=EC,∠AED=∠CEQ,DE=EQ,
∴△ADE≌△CQE,
∴AD=CQ,∠A=∠ACQ,
∴AB∥CQ,
∵AD=BD,
∴BD=CQ,
∴四边形DBCQ是平行四边形,
∴DQ=BC,DQ∥BC,
∴DE∥BC,DE=
1
2
BC.
证明:
延长DE到Q,使DE=EQ,连接CQ,
∵AE=EC,∠AED=∠CEQ,DE=EQ,
∴△ADE≌△CQE,
∴AD=CQ,∠A=∠ACQ,
∴AB∥CQ,
∵AD=BD,
∴BD=CQ,
∴四边形DBCQ是平行四边形,
∴DQ=BC,DQ∥BC,
∴DE∥BC,DE=
1
2
BC.
考点梳理
考点
分析
点评
专题
三角形中位线定理;平行线的判定;全等三角形的判定与性质;平行四边形的判定与性质.
延长DE到Q,使DE=EQ,连接CQ,根据SAS证△ADE≌△CQE,推出AD=CQ,∠A=∠ACQ,推出平行四边形DQCB,得出DQ=BC,DQ∥BC,即可推出答案.
本题主要考查对平行四边形的性质和判定,平行线的判定,全等三角形的性质和判定,三角形的中位线等知识点的理解和掌握,能证出四边形DQCB是平行四边形是解此题的关键.
证明题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )