答案
证明:∵四边形ABCD为平行四边形(已知),
∴DM∥BN,OD=OB(平行四边形的对边平行,对角线互相平分),
∴∠MDO=∠NBO(两直线平行,内错角相等),
在△DOM和△BON中,
| ∠MDO=∠NBO(已证) | OD=OB(已证) | ∠MOD=∠NOB(对顶角相等) |
| |
,
∴△DOM≌△BON(ASA),
∴MD=BN(全等三角形的对应边相等),
则四边形DMBN是平行四边形(一组对边平行且相等的四边形为平行四边形).
证明:∵四边形ABCD为平行四边形(已知),
∴DM∥BN,OD=OB(平行四边形的对边平行,对角线互相平分),
∴∠MDO=∠NBO(两直线平行,内错角相等),
在△DOM和△BON中,
| ∠MDO=∠NBO(已证) | OD=OB(已证) | ∠MOD=∠NOB(对顶角相等) |
| |
,
∴△DOM≌△BON(ASA),
∴MD=BN(全等三角形的对应边相等),
则四边形DMBN是平行四边形(一组对边平行且相等的四边形为平行四边形).