试题
题目:
如图,DE∥AB,DF∥AC,与AC,AB分别交于点E,F.
(1)D是BC上任意一点,求证:DE=AF.
(2)若AD是△ABC的角平分线,请写出与DE相等的所有线段
AE、AF、ED
AE、AF、ED
.
答案
AE、AF、ED
(1)证明:如图,∵DE∥AB,DF∥AC,
∴DE∥AF,DF∥AE,
∴四边形AEDF是平行四边形,
∴DE=AF;
(2)解:如图,连接AD.
由(1)知,四边形AEDF是平行四边形.
∵AD是△ABC的角平分线,
∴AD是·AEDF的角平分线,
∴·AEDF是菱形,
∴DE=AE=AF=ED.
故填:AE、AF、ED.
考点梳理
考点
分析
点评
平行四边形的判定与性质;等腰三角形的判定与性质.
(1)根据“有两组对边相互平行的四边形是平行四边形”证得四边形AEDF是平行四边形,则平行四边形的对边相等,即DE=AF;
(2)根据“一条对角线平分一组对角的平行四边形是菱形”证得平行四边形AEDF是菱形,则由菱形的性质填空.
本题考查了平行四边形的判定与性质,菱形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )